Search results for " hydrogen evolution"

showing 8 items of 8 documents

Photocatalytic solar light H2 production by aqueous glucose reforming

2018

A series of tungsten and nitrogen doped Pt-TiO2 samples were prepared with the aim to extend the TiO2 absorption to the visible light region and to enhance the separation efficiency of the photogenerated electron/hole pairs. The physicochemical features of the powders were characterized by Xray diffraction (XRD), UV/Vis reflectance spectra, specific surface area (SSA) determinations, and transmission electron microscopy (TEM) analyses. The influence of the presence of different doping agents was evaluated, under anaerobic conditions, in the aqueous photo-reforming of glucose to form H2 at ambient pressure and temperature under a halogen lamp or natural solar light irradiation. Arabinose, er…

Photocatalysis · Doping · Titanium dioxide · Glucose reforming · Hydrogen evolution · OxidationSettore CHIM/07 - Fondamenti Chimici Delle Tecnologie
researchProduct

Electrodeposited nickel–zinc alloy nanostructured electrodes for alkaline electrolyzer

2022

Abstract Over the last decade, as a consequence of the global decarbonization process, the interest towards green hydrogen production has drastically increased. In particular a substantial research effort has focused on the efficient and affordable production of carbon-free hydrogen production processes. In this context, the development of more efficient electrolyzers with low-cost electrode/electrocatalyst materials can play a key role. This work, investigates the fabrication of electrodes of nickel-zinc alloys with nanowires morphology cathode for alkaline electrolyzers. Electrodes are obtained by the simple method of template electrosynthesis that is also inexpensive and easily scalable.…

Potassium hydroxideMaterials scienceRenewable Energy Sustainability and the EnvironmentAlkaline water electrolysisNanowireEnergy Engineering and Power TechnologyOverpotentialCondensed Matter PhysicsElectrosynthesisElectrocatalystElectrochemistrychemistry.chemical_compoundSettore ING-IND/23 - Chimica Fisica ApplicataFuel TechnologyAlkaline electrolyzer Hydrogen evolution reaction Nanostructured electrodes Nanowires Nickel–zinc alloy Template electrosynthesischemistryChemical engineeringSettore ING-IND/17 - Impianti Industriali MeccaniciHydrogen productionInternational Journal of Hydrogen Energy
researchProduct

A mathematical description accounting for the superfluous hydrogen evolution and the inductive behaviour observed during electrochemical measurements…

2018

When electrochemical techniques are used to probe the surface of corroding magnesium with the aim of obtaining quantitative information on the corrosion process, two peculiarities are generally observed: i) with anodic polarization, the rate of hydrogen evolution increases instead of decreasing and ii) during electrochemical impedance spectroscopy measurements, an inductive contribution is often observed at the low-frequency end of the spectra. The presence of these two phenomena clearly has an impact on the methodology that should be applied to correctly estimate corrosion rates from electrochemical data. The aim of this work is to provide a general mathematical description of the corrodin…

CorrosionSettore ING-IND/23 - Chimica Fisica ApplicataInductive behaviourElectrochemistryMagnesiumChemical Engineering (all)Superfluous hydrogen evolution
researchProduct

Nanostructured Ni-Co Alloy Electrodes Fabrication and Characterization for both Hydrogen and Oxygen Evolution Reaction in Alkaline Electrolyzer

2019

Sun and wind as power sources are becoming more and more relevant owing to the progressive abandoning of the fossil fuels [1,2]. Additionally, worldwide public authorities are encouraging the use of renewable energies by promoting laws and guidelines [3,4]. In this scenario, a fundamental role can play hydrogen that besides being a valuable energy carrier, it can also act as a storage medium to balance the discontinuity affecting the renewable energy sources production [5]. As a consequence, cheap and abundant availability of hydrogen is crucial. Electrochemical water splitting is likely one of the most valuable technique to produce hydrogen because the process is environmentally friendly b…

Settore ING-IND/23 - Chimica Fisica ApplicataAlkaline Electrolyzer Hydrogen Evolution Reaction Oxygen Evolution Reaction Nanostructured material Ni-Co Alloy
researchProduct

Ni alloy nanowires as high efficiency electrode materialsnfor alkaline electrolysers

2020

Hydrogen production by water electrolysis (WE) is a very promising technology because it is a pollution-free process especially if renewable sources are employed to energy supply. Nowadays, the cost of hydrogen production by WE is higher than other available technologies, which makes WE not competitive. Many efforts have been made to improve WE performance, through the use of electrodes made of transition metal alloys as cathode and compound of metal oxide as anode [1]. In the field of water-alkaline electrolyzer, the development of cheap nanoporous based nickel electrodes with high electrocatalytic features is one of the potential approaches to increase the WE performance [2]. A facile met…

Nanowires electrolyzers water splitting oxygen evolution hydrogen evolution electrocatalystisSettore ING-IND/23 - Chimica Fisica ApplicataSettore ING-IND/17 - Impianti Industriali Meccanici
researchProduct

Optimization of Electrodeposited Nickel-Zinc Alloys for Alkaline Electrolyzer with Nanostructured Electrodes

It is common opinion that hydrogen will become increasingly important over time. However, many research efforts still need to be made to develop efficient, low-cost and carbon-free hydrogen production. In this context, electrolysers will play a key role, but it is necessary to develop efficient and low-cost electrode/electrocatalyst materials. In this work, Nickel-Zinc alloy electrodes with nanowires morphology were investigated as cathode for alkaline electrolyzer. Electrodes were obtained by the simple method of template electrosynthesis that is also inexpensive and scalable. Nanostructured electrodes were analysed by morphological and chemical analyses. The nanowires composition is depen…

Settore ING-IND/23 - Chimica Fisica ApplicataSettore ING-IND/17 - Impianti Industriali MeccaniciAlkaline Electrolyzer Nanostructured Electrodes Nickel-Zinc Alloy Hydrogen Evolution Reaction Template Electrosynthesis
researchProduct

Review of the Hydrogen Evolution Reaction—A Basic Approach

2021

An increasing emphasis on energy storage has resulted in a surge of R&D efforts into producing catalyst materials for the hydrogen evolution reaction (HER) with emphasis on decreasing the usage of platinum group metals (PGMs). Alkaline water electrolysis holds promise for satisfying future energy storage demands, however the intrinsic potential of this technology is impeded by sluggish reaction kinetics. Here, we summarize the latest efforts within alkaline HER electrocatalyst design, where these efforts are divided between three catalyst design strategies inspired by the three prevailing theories describing the pH-dependence of the HER activity. Modifying the electronic structure of a …

TechnologyControl and OptimizationRenewable Energy Sustainability and the EnvironmentTalkaline hydrogen evolution reactionEnergy Engineering and Power Technologyalkaline HERwater electrolysisVDP::Matematikk og Naturvitenskap: 400::Geofag: 450anion exchange membrane electrolysisElectrical and Electronic EngineeringAEM electrolysisEngineering (miscellaneous)catalyst materialsEnergy (miscellaneous)
researchProduct

Flexible Perfluoropolyethers-Functionalized CNTs-Based UHMWPE Composites: A Study on Hydrogen Evolution, Conductivity and Thermal Stability

2022

Flexible conductive composites based on ultra-high molecular weight polyethylene (UHMWPE) filled with multi-walled carbon nanotubes (CNTs) modified by perfluoropolyethers (PFPEs) were produced. The bonding of PFPE chains, added in 1:1 and 2:1 weight ratios, on CNTs influences the dispersion of nanotubes in the UHMWPE matrix due to the non-polar nature of the polymer, facilitating the formation of nanofillers-rich conductive pathways and improving composites’ electrical conductivity (two to five orders of magnitude more) in comparison to UHMWPE-based nanocomposites obtained with pristine CNTs. Electrochemical atomic force microscopy (EC-AFM) was used to evaluate the morphological changes dur…

flexible electrode functionalized CNTs hydrogen evolution perfluoropolyethers UHMWPE compositesUHMWPE compositesperfluoropolyethersflexible electrodehydrogen evolutionfunctionalized CNTsSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiGeneral Materials ScienceUHMWPE composites; functionalized CNTs; perfluoropolyethers; flexible electrode; hydrogen evolutionMaterials; Volume 15; Issue 19; Pages: 6883
researchProduct